Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If A = $\begin{bmatrix}0&-1\\ 1&0\end{bmatrix}$, then which one of the following statements is not correct ?

JEE MainJEE Main 2015Matrices

Solution:

Given that
$A = \begin{bmatrix}0&-1\\ 1&0\end{bmatrix}$
$A^{2} = \begin{bmatrix}-1&0\\ 0&-1\end{bmatrix} \Rightarrow A^{2} = -I$
$A^{3} = \begin{bmatrix}0&1\\ -1&0\end{bmatrix}$
$A^{4} = \begin{bmatrix}1&0\\ 0&1\end{bmatrix} = I$
$A^{2} +I = A^{3}-A$
$-I + I = A^{3}-A$
$A^{3} \ne A$