Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A = \begin{bmatrix}0&-1\\ 1&0\end{bmatrix}$ then $A^{16}$ is equal to :

Matrices

Solution:

We have $A = \begin{bmatrix}0&-1\\ 1&0\end{bmatrix} $
Now, $A^{2} = A.A = \begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\begin{pmatrix}0&-1\\ 1&0\end{pmatrix} $
$ = \begin{pmatrix}-1&0\\ 0&-1\end{pmatrix} = - I $
where $I = \begin{pmatrix}1&0\\ 0&1\end{pmatrix}$ is identity matrix
$ \left(A^{2}\right)^{8} = \left(-I\right)^{8} = I$
Hence, $ A^{16} = I $