Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $8 i z^3+12 z^2-18 z+27 i=0$, then

Complex Numbers and Quadratic Equations

Solution:

$8 i z^3+12 z^2-18 z+27 i =0 $
$\Rightarrow 8 i z^3-12 i^2 z^2-18 z+27 i =0$
$\Rightarrow 4 i z^2(2 z-3 i)-9(2 z-3 i) =0$
$\Rightarrow \left(4 i z^2-9\right)(2 z-3 i)=0 $
$\Rightarrow z^2=\frac{9}{4 i} \text { or } z=\frac{3 i}{2}$
In any case $|z|=3 / 2$.