Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\left(7-4\sqrt{3}\right)^{x^2-4x+3} + \left(7+4\sqrt{3}\right)^{x^2-4x+3} = 14,$ then the value of x is given by

Complex Numbers and Quadratic Equations

Solution:

Since $\left(7-4\sqrt{3}\right) + \left(7+4\sqrt{3}\right)= 1$
$\therefore $ The given equation becomes
$y + \frac{1}{y} = 14$ where $y = \left(7-4\sqrt{3}\right)^{x^2-4x+3} $
$\Rightarrow y^{2 }- 14y + 1 = 0 \Rightarrow y = 7 \pm 4\sqrt{3}$
Now $y = 7 + 4\sqrt{3} \Rightarrow x^{2 }- 4x + 3 = -1 \Rightarrow x = 2, 2$
Also $y = 7 - 4 \sqrt{3} \Rightarrow x^{2 }- 4x + 3 = 1 \Rightarrow x = 2 \pm \sqrt{2}$