Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\sqrt{-7-24 i}=x+i y$, then find $x^{2}+y^{2}$

Complex Numbers and Quadratic Equations

Solution:

$x+i y=\sqrt{-7-24 i}$
$\Rightarrow x-i y=\sqrt{-7-24 i}$
$\ldots$ [Writing complex conjugate]
$\Rightarrow x^{2}+y^{2}=(x+i y)(x-i y)$
$=\sqrt{(-7+24 i)(-7-24 i)}$
$=\sqrt{49+576}$
$=\sqrt{625}=25$