Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ {{(\sqrt{5}+\sqrt{3}i)}^{33}}={{2}^{49}}z, $ then modulus of the complex number $z$ is equal to

KEAMKEAM 2008Complex Numbers and Quadratic Equations

Solution:

Given, $ {{(\sqrt{5}+\sqrt{3}i)}^{33}}={{2}^{49}}z $ Let $ \sqrt{5}=r\cos \theta ,\sqrt{3}=r\sin \theta $
$ \therefore $ $ {{r}^{2}}=5+3 $
$ \Rightarrow $ $ r=2\sqrt{2} $
$ \therefore $ $ {{(r\cos \theta +ir\sin \theta )}^{33}}={{2}^{49}}z $
$ \Rightarrow $ $ |{{r}^{33}}(cos33\theta +i\sin 33\theta )=|{{2}^{49}}z| $
$ \Rightarrow $ $ {{(2\sqrt{2})}^{33}}|\cos 33\theta +i\sin 33\theta |={{2}^{49}}|z| $
$ \Rightarrow $ $ {{2}^{\frac{99}{2}}}(1)={{2}^{49}}|z| $
$ \Rightarrow $ $ |z|={{2}^{\frac{99}{2}-49}} $
$ \Rightarrow $ $ |z|=\sqrt{2} $