Thank you for reporting, we will resolve it shortly
Q.
If $4x+3y-12=0$ touches $\left(x - p\right)^{2}+\left(y - p\right)^{2}=p^{2}$ , then the sum of all the possible values of $p$ is
NTA AbhyasNTA Abhyas 2020Conic Sections
Solution:
The distance of the centre $\left(p , p\right)$ of the given circle from the line $4x+3y-12=0$ is equal to the radius $\left(\left|p\right|\right)$
$\Rightarrow \left|\frac{4 p + 3 p - 12}{5}\right|=\left|p\right|$
$\Rightarrow 7p-12=5p$ or $7p-12=-5p$
$\Rightarrow p=6$ or $p=1$
$\Rightarrow $ sum of all the possible values of $āpā=6+1=7$