Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 4 sin 27°=√α -√β , then the value of α +β is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\,4 \sin 27^{\circ}=\sqrt{\alpha }-\sqrt{\beta }$ , then the value of $\alpha +\beta $ is
NTA Abhyas
NTA Abhyas 2022
A
$5\,$
B
$3\,$
C
$8\,$
D
$2\,$
Solution:
$\cos 27^{\circ}+\sin 27^{\circ 2}=1+2 \sin 27^{\circ}$
$\cos 27^{\circ}=1+\sin 54^{\circ}=1+\cos 36^{\circ}$
$\Rightarrow \cos 27^{\circ}+\sin 27^{\circ}=\sqrt{1+\cos 36^{\circ}}$
Similarly, $\cos 27^{\circ}-\sin 27^{\circ}=$
$\sqrt{1-\cos 36^{\circ}}\left(\right.$ since, $\left.\cos 27^{\circ}>\sin 27^{\circ}\right)$
On subtracting, we get,
$2 \sin 27^{\circ}=\sqrt{1+\cos 36^{\circ}}-\sqrt{1-\cos 36^{\circ}}$
$=\sqrt{1+\frac{\sqrt{5}+1}{4}}-\sqrt{1-\frac{\sqrt{5}+1}{4}}$
$=\frac{\sqrt{5+\sqrt{5}}}{2}-\frac{\sqrt{3-\sqrt{5}}}{2}$
$\Rightarrow 4 \sin 27^{\circ}=\sqrt{5+\sqrt{5}}-\sqrt{3-\sqrt{5}}$
$\Rightarrow \alpha=5+\sqrt{5}$ and $\beta=3-\sqrt{5}$
$\Rightarrow \alpha+\beta=8$