Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If 4 times the area of a $\triangle ABC$ is $c^2-(a-b)^2$, then $\sin C$

TS EAMCET 2021

Solution:

$ 4 \Delta=c^2-(a-b)^2$
$4 \cdot \frac{1}{2} a b \sin C=c^2-a^2-b^2+2 a b $
$ \sin C=1-\frac{a^2+b^2-c^2}{2 a b} $
$ \Rightarrow \sin C=1-\cos C \Rightarrow \sin C+\cos C=1$
$ \Rightarrow \sqrt{2} \sin \left(C+\frac{\pi}{4}\right)=1 $
$ C+\frac{\pi}{4}=\frac{3 \pi}{4} $
$\therefore C=\frac{\pi}{2}$