Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ 4\,\sin \,A=4\,\sin B=3\,\sin \,C $ in a triangle $ABC$, then $ \cos \,\,C $ is equal to

J & K CETJ & K CET 2008Trigonometric Functions

Solution:

Given, $ 4\,\,\sin \,A=4\,\sin B=3\,\sin C $
or $ \frac{\sin A}{1/4}=\frac{\sin B}{1/4}=\frac{\sin C}{1/3} $
or $ \frac{\sin A}{3}=\frac{\sin B}{3}=\frac{\sin C}{4} $
Here, $ a=3k,b=3k $ and $ c=4k $
$ \therefore $ $ \cos \,C=\frac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} $
$ =\frac{9{{k}^{2}}+9{{k}^{2}}-16{{k}^{2}}}{2\times 3k\times 3k}=\frac{1}{9} $