Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 4 dice are rolled once, the number of ways of getting the sum as 10 is K , then the value of (K/10) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $4$ dice are rolled once, the number of ways of getting the sum as $10$ is $K$ , then the value of $\frac{K}{10}$ is equal to
NTA Abhyas
NTA Abhyas 2020
Permutations and Combinations
A
B
C
D
Solution:
$x_{1}+x_{2}+x_{3}+x_{4}=10;$ $1\leq x_{i}\leq 6$
The desired number is the coefficient of $x^{10}$ in
$\left(x + x^{2} + \ldots + x^{6}\right)^{4}=x^{4}\left(1 + x + \ldots + x^{5}\right)^{4}$
or the coefficient of $x^{6}$ in $\left(1 + x + x^{2} + \ldots + x^{5}\right)^{4}$
$=\left(\frac{1 - x^{6}}{1 - x}\right)^{4}=\left(1 - x^{6}\right)^{4}\left(1 - x\right)^{- 4}$
$=\left(1 - 4 x^{6} + \ldots \right)\left(1 - x\right)^{- 4}$
or the coefficient of $x^{6}$ in $\left(1 - x\right)^{- 4}-4\times $ coefficient of $x^{0}$ in $\left(1 - x\right)^{- 4}$
$=^{6 + 4 - 1}C_{4 - 1}-4\times ^{0 + 4 - 1}C_{4 - 1}$
$=^{9}C_{3}-4\times 1=\frac{9 \times 8 \times 7}{3 \times 2}-4=84-4=80$
$\Rightarrow K=80\Rightarrow \frac{K}{10}=8$