Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $4\, cos^{-1}x + sin^{-1} x = \pi$, then the value of $x$ is

Inverse Trigonometric Functions

Solution:

We have, $4 \,cos^{-1}x + sin^{-1}x = \pi$
$\Rightarrow 4\left\{\frac{\pi}{2}-sin^{-1}\,x\right\} +sin^{-1}\,x = \pi$
$\Rightarrow 2\pi - 4sin^{-1}\,x +sin^{-1}\,x = \pi$
$\Rightarrow 3\,sin^{-1}\,x = \pi$
$\Rightarrow sin^{-1}\,x = \frac{\pi}{3}$
$\Rightarrow x = sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$