Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A = \begin{bmatrix}-4&-1\\ 3&1\end{bmatrix}$, then the determinant of the matrix $(A^{2016} - 2A^{2015 } - A^{2014})$ is :

JEE MainJEE Main 2016Determinants

Solution:

$A=\begin{bmatrix}-4 & -1 \\ 3 & 1\end{bmatrix}$
$A^{2}=\begin{bmatrix}-4 & -1 \\ 3 & 1\end{bmatrix}\begin{bmatrix}-4 & -1 \\ 3 & 1\end{bmatrix}=\begin{bmatrix}13 & 3 \\ -9 & -2\end{bmatrix}$
$A^{2}-2A -I =\begin{bmatrix}13&3\\ -9&-2\end{bmatrix}\begin{bmatrix}-8&-2\\ 6&2\end{bmatrix}\begin{bmatrix}1&0\\ 0&1\end{bmatrix}=\begin{bmatrix}20&5\\ -15&-5\end{bmatrix}$
And $|A|=-1$
$\Rightarrow \left|A^{2016}-2 A^{2015}-A^{2014}\right|=|A|^{2014}$
$\left|A^{2}-2A -I\right|=1\begin{vmatrix}20&5\\ -15&-5\end{vmatrix}=\left(-100+75\right)=-25$