Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{3x - 4}{2} \ge \frac{x + 1}{4} - 1$, then $x\in$

Linear Inequalities

Solution:

We have $\frac{3x - 4}{2} \ge \frac{x + 1}{4} - 1$
or, $\frac{3x - 4}{2} \ge \frac{x -3}{4}$ or, $2\left(3x - 4\right) \ge\left(x -3 \right)$
or, $6x - 8 \ge x - 3$ or, $5x \ge 5$ or $x \ge 1$
Thus all real numbers which are greater than or equal to $1$ is the solution set of the given inequality
$\therefore \quad x \in [1$, $\infty)$