Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ ^{32}{{P}_{6}}=k\,{{(}^{32}}{{C}_{6}}), $ then $k$ is equal to

J & K CETJ & K CET 2015Permutations and Combinations

Solution:

Given, $ ^{32}{{P}_{e}}=k\,{{(}^{32}}{{C}_{6}}) $
$ \Rightarrow $ $ \frac{32!}{(32-6)!}=k.\frac{32!}{6!(32-6)!} $ $ \left[ \because \,{{\,}^{n}}{{P}_{r}}=\frac{n!}{(n-r)!}\,\,and{{\,}^{n}}{{C}_{r}}=\frac{n!}{r!(n-r)!} \right] $
$ \Rightarrow $ $ 1=\frac{k}{6!}\Rightarrow k=6! $
$ \Rightarrow $ $ k=6\times 5\times 4\times 3\times 2\times 1=720 $