Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 3x+22x ≥ 5x, then the solution set for x is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $3^x+2^{2x} \geq 5^x$, then the solution set for $x$ is
Complex Numbers and Quadratic Equations
A
$(- \infty ,2)$
27%
B
$[2, \infty )$
38%
C
$(0, 2)$
25%
D
$\{2\}$
11%
Solution:
We have
$x^2\cdot 2^{x+ 1} + 2^{|x-3| +2} - x^2\cdot 2^{|x-3| +4} +2^{x-1} $
If $x - 3 \geq 0$ i.e., $x \geq 3$, then $x$ is not negative
$\therefore $ this possibility is ruled out.
$\therefore $ $x - 3 < 0\,$ i.e., $\, x < 3$
$\therefore $ given equation becomes
$x^2\cdot 2^{x+ 1} + 2^{3-x + 2} = x^22^{3 -x + 4} +2^{x -1}$
$\Rightarrow $ $x^2\cdot 2^{x+1} + 2^{5 -x} = 2^2\cdot 2^{7-x} + 2^{x-1} $
$\Rightarrow $ $x^2\cdot 2^{x+1} -x^2\cdot 2^{7-x}+ 2^{5-x} -2^{x-1} = 0$
$\Rightarrow $ $x^2\cdot 2^2 (2^{x -1} - 2^{5-x}) + (2^{5 -x} - 2^{ x-1}) = 0$
$\Rightarrow $ $(4x^2 - 1) (2^{x+1} -2^{5-x}) = 0$
$\Rightarrow $ $(4x^2- 1) (2^{2x-6} - 1) = 0$
$\Rightarrow \, x^2 = \frac{1}{4} $ and $2^{2x -6} = 1$
$ \Rightarrow 2x - 6 = 0$
$ \Rightarrow x = 3 $
$\therefore \, x = \pm \frac{1}{2} $ and $x = 3$
But $x < 3$ and $x$ is a negative integer.
$\therefore \, x \neq \pm \frac{1}{2}$ and $x \neq 3 $
Hence there is no negative integral solution.