Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $3 \tan ^{2} \theta-2 \sin \theta=0$, then $\theta=$

Trigonometric Functions

Solution:

$3 \frac{\sin ^{2} \theta}{\cos ^{2} \theta}-2 \sin \theta=0, \cos \theta \neq 0$
$\Rightarrow 3 \sin \theta^{2}-2 \sin \theta\left(1-\sin \theta^{2}\right)=0$
$\Rightarrow 3 \sin \theta^{2}-2 \sin \theta\left(1-\sin \theta^{2}\right)=0$
$\Rightarrow \sin \theta\left(2 \sin \theta^{2}+3 \sin \theta-2\right)=0$
$\Rightarrow \sin \theta(2 \sin \theta-1)(\sin \theta+2)=0$
$\Rightarrow \sin \theta=0,1-2($ rejected $)$
$\Rightarrow \theta=n \pi, n \pi+(-1)^{n} \frac{\pi}{6}$