Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $3 \,sin^{-1}\left(\frac{2x}{1+x^{2}}\right) - 4 \,cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) + 2 \,tan^{-1} \left(\frac{2x}{1-x^{2}}\right) = \frac{\pi}{3}$ where $|x| < 1$, then $x$ is equal to

Inverse Trigonometric Functions

Solution:

The given equation is
$3(2\,tan^{-1}x) - 4(2\,tan^{-1}x) + 2(2\,tan^{-1}x) = \pi/3$
$\therefore 2 \,tan^{-1}x = \pi/3$
$\therefore tan^{-1} x = \pi/6$
$\therefore x = \frac{1}{\sqrt{3}}$