Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ 3{{p}^{2}}=5p+2 $ and $ 3{{q}^{2}}=5q+2 $ where $ n\ne q, $ then the equation whose roots are $ 3p-2q $ and $ 3q-2p $ is:

KEAMKEAM 2000

Solution:

Given that, $ 3{{p}^{2}}-5p-2=0 $ $ \Rightarrow $ $ (3p+1)(p-2)=0 $ $ \Rightarrow $ $ p=-\frac{1}{3},2 $ and $ 3{{q}^{2}}-5q-2=0 $ $ \Rightarrow $ $ (3q+1)\,(q-2)=0 $ $ \Rightarrow $ $ q=\frac{-1}{3},\,2 $ Since, $ p\ne q\Rightarrow p=-\frac{1}{3},q=2 $ Now, $ (3p-2q)=-1-4=-5 $ and $ (3p-2p)=6+\frac{2}{3}=\frac{20}{3} $ $ \therefore $ Equation is $ {{x}^{2}}-\left( -5+\frac{20}{3} \right)x+\frac{(-5)(20)}{3}=0 $ $ \Rightarrow $ $ 3{{x}^{2}}-5x-100=0 $