Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 3p2=5p+2 and 3q2=5q+2 where n≠ q, then the equation whose roots are 3p-2q and 3q-2p is:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ 3{{p}^{2}}=5p+2 $ and $ 3{{q}^{2}}=5q+2 $ where $ n\ne q, $ then the equation whose roots are $ 3p-2q $ and $ 3q-2p $ is:
KEAM
KEAM 2000
A
$ 5{{x}^{2}}-3x-100=0 $
B
$ 5{{x}^{2}}+3x+100=0 $
C
$ 3{{x}^{2}}-5x+100=0 $
D
$ 3{{x}^{2}}+5x-100=0 $
E
$ 3{{x}^{2}}-5x-100=0 $
Solution:
Given that, $ 3{{p}^{2}}-5p-2=0 $ $ \Rightarrow $ $ (3p+1)(p-2)=0 $ $ \Rightarrow $ $ p=-\frac{1}{3},2 $ and $ 3{{q}^{2}}-5q-2=0 $ $ \Rightarrow $ $ (3q+1)\,(q-2)=0 $ $ \Rightarrow $ $ q=\frac{-1}{3},\,2 $ Since, $ p\ne q\Rightarrow p=-\frac{1}{3},q=2 $ Now, $ (3p-2q)=-1-4=-5 $ and $ (3p-2p)=6+\frac{2}{3}=\frac{20}{3} $ $ \therefore $ Equation is $ {{x}^{2}}-\left( -5+\frac{20}{3} \right)x+\frac{(-5)(20)}{3}=0 $ $ \Rightarrow $ $ 3{{x}^{2}}-5x-100=0 $