Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (3 + cot 80o cot â¡ 20o/cot â¡ 80o + cot â¡ 20o)= tan((a π /b)), then the value of a+b is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\frac{3 + cot 80^{o} cot 20^{o}}{cot 80^{o} + cot 20^{o}}=$ $tan\left(\frac{a \pi }{b}\right),$ then the value of $a+b$ is
NTA Abhyas
NTA Abhyas 2022
A
B
C
D
Solution:
$\frac{3 \sin 80^{\circ} \sin 20^{\circ}+\cos 80^{\circ} \cos 20^{\circ}}{\sin 20^{\circ} \cos 80^{\circ}+\cos 20^{\circ} \sin 80^{\circ}}$
$=\frac{2 \sin 20^{\circ} \sin 80^{\circ}+\left(\cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20\right)}{\sin \left(20^{\circ}+80^{\circ}\right)}$
$=\frac{\cos 60^{\circ}-\cos 100^{\circ}+\cos \left(80^{\circ}-20^{\circ}\right)}{\sin 100^{\circ}}$
$=\frac{2 \cos 60^{\circ}-\cos 100^{\circ}}{\sin 100^{\circ}}=\frac{1-\cos 100^{\circ}}{\sin 100^{\circ}}$
$=\frac{2 \sin { }^{2} 50^{\circ}}{2 \sin 50^{\circ} \cos 50^{\circ}=\tan 50^{\circ}}$
$=\tan \frac{5 \pi}{18}$
$\Rightarrow a+b=5+18=23$