Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ((3/2)+i(√3/2))50 =325 (x+iy), where x and y are real, then the ordered pair (x,y) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)^{50} \, =3^{25} \left(x+iy\right),$ where $x$ and $y$ are real, then the ordered pair $(x,y)$ is
WBJEE
WBJEE 2012
Complex Numbers and Quadratic Equations
A
$(-3, 0)$
11%
B
$(0, 3)$
27%
C
$(0, -3)$
22%
D
$\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$
40%
Solution:
Let $z=\frac{3}{2}+i \frac{\sqrt{3}}{2}$
$r=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{\frac{12}{4}}=\sqrt{3}$
$\theta =\tan ^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}\right)$
$=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$
$\therefore \frac{3}{2}+\frac{i \sqrt{3}}{2}=\sqrt{3} e^{\frac{i \pi}{6}}$
$\therefore \left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=\left(\sqrt{3} e^{\frac{i \pi}{6}}\right)^{50}$
$=(\sqrt{3})^{50}\left(e^{\frac{i \pi}{6}}\right)^{50}=3^{25} e^{\frac{50 \pi}{6}}$
$\Rightarrow \left(\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)^{50}=3^{25} e^{\frac{i 25 \pi}{3}}$
$=3^{25}\left(\cos \frac{25 \pi}{3}+i \sin \frac{25 \pi}{3}\right)$
$=3^{25}(\cos 1500+i \sin 1500)$
$\left.=3^{25}[\cos (360 \times 4+60)+i \sin (360) \times 4+60)\right]$
$=3^{25}(\cos 60+i \sin 60)$
$\Rightarrow \left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$ ...(i)
According to question,
$\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}(x +i y)$
$3^{25}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=3^{25}(x +i y)$
which is true only when $x=\frac{1}{2}, y=\frac{\sqrt{3}}{2}$