Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \frac{2{{z}_{1}}}{3{{z}_{2}}} $ is a purely imaginary, then $ \left| \frac{{{z}_{1}}-{{z}_{2}}}{{{z}_{1}}+{{z}_{2}}} \right| $ is:

KEAMKEAM 2004

Solution:

$ \because $ $ \frac{2{{z}_{1}}}{3{{z}_{2}}} $ is purely imaginary
$ \Rightarrow $ $ \frac{2{{z}_{1}}}{3{{z}_{2}}}=ki $ where $ k\in R $
$ \Rightarrow $ $ \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{3}{2}ki $
Now, $ \left| \frac{{{z}_{1}}-{{z}_{2}}}{{{z}_{1}}+{{z}_{2}}} \right|=\left| \frac{\frac{{{z}_{1}}}{{{z}_{2}}}-1}{\frac{{{z}_{1}}}{{{z}_{2}}}+1} \right|=\left| \frac{3ki-2}{3ki+2} \right| $
$ =1 $