Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{2 z_{1}}{3 z_{2}}$ is a purely imaginary number, then $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=$

Complex Numbers and Quadratic Equations

Solution:

As given, let $\frac{2 z_{1}}{3 z_{2}}= iy$ or $\frac{z_{1}}{z_{2}}=\frac{3}{2}$ iy, so that
$\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=\left|\frac{\frac{z_{1}}{z_{2}}-1}{\frac{z_{1}}{z_{2}}+1}\right|=\left|\frac{\frac{3}{2} i y-1}{\frac{3}{2} i y+1}\right|=\left|\frac{1-\frac{3}{2} i y}{1+\frac{3}{2} i y}\right|=1 $
$\{\because|z|=|\bar{z}|\}$