Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $2^{x}+2^{y}=2^{x+y}$, then $\frac{d y}{d x}=$

BITSATBITSAT 2021

Solution:

On differentiating
$2^{x} \log 2+2^{y} \log 2 \cdot \frac{ dy }{ dx }$
$=2^{x} \cdot 2^{y} \frac{ dy }{ dx } \cdot \log 2+2^{y} \cdot 2^{x} \log 2$
$\Rightarrow 2^{x}+2^{y} \frac{ dy }{ dx }=2^{x+y} \frac{ dy }{ dx }+2^{x+y} $
$\Rightarrow \frac{ dy }{ dx }=\frac{2^{x+y}-2^{x}}{2^{y}-2^{x+y}}$
$\Rightarrow \frac{ dy }{ dx }=\frac{2^{x}+2^{y}-2^{x}}{2^{y}-2^{x}-2^{y}}=-2^{y-x}$