Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ 2\,tan^{-1}(cos\,x) = tan^{-1} (2cosec\,x) $ , then $ x $ is equal to

AMUAMU 2010

Solution:

Given, $2 tan^{-1} \left(cos\,x\right)=tan^{-1} \left(2cosec\,x\right)$
$\Rightarrow 2tan^{-1} \left(cos\,x\right)=tan^{-1}\left(2cosec\,x\right)$
$\Rightarrow tan^{-1} \left(\frac{2\,cos\,x}{1-cos^{2}\,x}\right)=tan^{-1} \left(2cosec \,x\right)$
$\Rightarrow \frac{2\,cos\,x}{sin^{2}\,x}=\frac{2}{sin\,x}$
$\Rightarrow sin^{2}\,x-sin\,x\cdot cos\,x=0$
$\Rightarrow sin\,x\left(sin\,x-cos\,x\right)=0$
$\Rightarrow sin\, x=0$ or $tan \, x=1$
$\Rightarrow x=0$ or $x=\pi /4$
Here, $x=\pi /4$ satisfies the given equation
So, $x\ne0$