Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \text{cosec} x)$, then the value of $x$ is

ManipalManipal 2016

Solution:

Given, $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \text{cosec} x)$
$\therefore \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \text{cosec} x) $
$\Rightarrow \frac{2 \cos x}{1-\cos ^{2} x}=2 \text{cosec} $
$\Rightarrow \sin x=\cos x $
$\Rightarrow x=\frac{\pi}{4}$