Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $2^{|\ln x-2|}=\frac{4}{2^{|\ln x|}}$, then complete set of values of $x$ is

Relations and Functions - Part 2

Solution:

$ 2^{|\ln x-2|}=2^{2-|\ln x|} $
$\Rightarrow|\ln x-2|+|\ln x|=2$
Using property
$| a |+| b |=| a - b | \Rightarrow ab \leq 0 $
$\therefore \ln x (\ln x -2) \leq 0$
$\Rightarrow 0 \leq \ln x \leq 2 \Rightarrow 1 \leq x \leq e ^2$