Thank you for reporting, we will resolve it shortly
Q.
If $ 2\hat{i}+4\hat{j}-5\hat{k} $ and $ \hat{i}+2\hat{j}+3\hat{k} $ are adjacent sides of a parallelogram, then the lengths of its diagonals are
J & K CETJ & K CET 2007
Solution:
Let $ \vec{a}=2\hat{i}+4\hat{j}-5\hat{k},\,\,\vec{b}=\hat{i}+2\hat{j}+3\hat{k} $
First diagonal $ =\vec{a}+\vec{b}=3\hat{i}+6\hat{j}-2\hat{k} $
Second diagonal $ =\vec{a}-\vec{b}=\hat{i}+2\hat{j}-8\hat{k} $
Length of first diagonal $ =\sqrt{9+36+4}=\sqrt{49}=7 $
Length of second diagonal $ =\sqrt{1+4+64}=\sqrt{69} $