Thank you for reporting, we will resolve it shortly
Q.
If 2−cos2θ=3sinθcosθ , sinθ≠cosθ , then find the value of cotθ
Jharkhand CECEJharkhand CECE 2012
Solution:
2−cos2θ=3sinθcosθ
Dividing both sides by cos2θ ,
we get 2sec2θ−1=3tanθ 2(1+tan2θ)−1=3tanθ ⇒2+2tan2θ−1=3tanθ ⇒2tan2θ−3tanθ+1=0 ⇒2tan2θ−2tanθ−tanθ+1=0 ⇒2tanθ(tanθ−1)−(tanθ−1)=0 ⇒(2tanθ−1)(tanθ−1)=0 ⇒tanθ=12 and 1 ⇒cotθ=2 and 1