Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $2^{10}+2^{9} \cdot 3^{1}+2^{8} \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}= S -2^{11}$ then $S$ is equal to :

JEE MainJEE Main 2020Sequences and Series

Solution:

$a =2^{10} ; r =\frac{3}{2} ; n =11$ (G.P.)
$S ^{\prime}=\left(2^{10}\right) \frac{\left(\left(\frac{3}{2}\right)^{11}-1\right)}{\frac{3}{2}-1}=2^{11}\left(\frac{3^{11}}{2^{11}}-1\right)$
$S ^{\prime}=3^{11}-2^{11}= S -2^{11}$ (Given )
$\therefore S =3^{11}$