Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 1399-1993 is divided by 162, then the remainder is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $13^{99}-19^{93}$ is divided by $162,$ then the remainder is
NTA Abhyas
NTA Abhyas 2022
A
$3$
B
$6$
C
$5$
D
$0$
Solution:
$13^{99}-19^{93}=$ odd number $-$ odd number $=$ even number
$\Rightarrow $ It is divisible by $2.$
Also, $13^{99}=\left(1 + 12\right)^{99}=1+^{99}C_{1}\cdot 12+^{99}C_{2}\cdot 12^{2}+^{99}C_{3}\cdot 12^{3}+^{99}C_{4}\cdot 12^{4}+....$
$=1+99\times 12+\frac{99 \times 98}{2}\cdot 12^{2}+\frac{33 \cancel{99} \times 49 \cancel{98} \times 97}{\cancel{3} \times \cancel{2}}\times 12^{3}+81Ι_{1}$
$=1+99\times 12+99\times 49\cdot 12^{2}+3\times 11\times 49\times 97\times 12^{3}+81Ι_{1}$
$=1+99\times 12+81\left\{11 \times 49 \times 16 + 11 \times 49 \times 97 \times 64 + Ι_{1}\right\}$
$13^{99}=1+99\times 12+81Ι_{2}$
$19^{93}=\left(1 + 18\right)^{93}=1+^{93}C_{1}\cdot 18+^{93}C_{2}\cdot 18^{2}+....$
$=1+93\times 18+81Ι_{3}$
$\Rightarrow 13^{99}-19^{93}=99\times 12-93\times 18+81\left(Ι_{2} - Ι_{3}\right)$
$=27\left\{11 \times 4 - 31 \times 2\right\}+81Ι_{4}$
$=27\left(44 - 62\right)+81Ι_{4}=27\times \left(- 18\right)+81Ι_{4}$
$=81\left\{- 6 + Ι_{4}\right\}=81Ι_{5}$
Hence, it is also divisible by $81$ .
So, it is divisible by $162\Rightarrow $ Remainder $=0.$