Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{1}{x}+\frac{1}{2 x^2}+\frac{1}{4 x^3}+\frac{1}{8 x^4}+\frac{1}{16 x^5}+\ldots \ldots . . \infty=\frac{1}{64}$, then the value of $x$ is

Sequences and Series

Solution:

$\frac{\frac{1}{x}}{1-\frac{1}{2 x}}=\frac{1}{64} \Rightarrow \frac{\frac{1}{x}}{\frac{2 x-1}{2 x}}=\frac{1}{64}$
$\frac{2}{2 x-1}=\frac{1}{64} \Rightarrow 128=2 x-1 \quad \Rightarrow \quad x=\frac{129}{2}$