Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{1-i \alpha}{1+i \alpha}=A +i B$, then $A^{2}+B^{2}$ equals to

BITSATBITSAT 2010

Solution:

$A+i B=\frac{1-i \alpha}{1+i \alpha}$
$\Rightarrow A=i B=\frac{1+i \alpha}{1-i \alpha}$
$\Rightarrow (A+i B)(A-i B)$
$=\frac{(1-i \alpha)(1+i \alpha)}{(1+i \alpha)(1-i \alpha)}=1$
$\Rightarrow A^{2}+B^{2}=1$