Q. If $1, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots of $x^5-1=0$, then the value of $\frac{\omega-\alpha_1}{\omega^2-\alpha_1} \frac{\omega-\alpha_2}{\omega^2-\alpha_2} \frac{\omega-\alpha_3}{\omega^2-\alpha_3} \frac{\omega-\alpha_4}{\omega^2-\alpha_4} \ldots$ is . (where $\omega$ is imaginary cube root of unity.)
Complex Numbers and Quadratic Equations
Solution: