Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $1+\left(2+{ }^{49} C _1+{ }^{49} C _2+\ldots \ldots+{ }^{49} C _{49}\right)$ $\left({ }^{50} C _2+{ }^{50} C _4+\ldots . .+{ }^{50} C _{50}\right)$ is equal to $2^{ n } . m$, where $m$ is odd, then $n + m$ is equal to

JEE MainJEE Main 2022Permutations and Combinations

Solution:

$ 1+\left(1+2^{49}\right)\left(2^{49}-1\right)=2^{98} $
$ m =1, n =98 $
$ m + n =99$