Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $0< x , y <\pi$ and $\cos x +\cos y -\cos ( x + y )=\frac{3}{2},$ then $\sin x+$ cos y is equal to :

JEE MainJEE Main 2021Trigonometric Functions

Solution:

$\cos x+\cos y-\cos (x+y)=\frac{3}{2}$
$\cos ^{2}\left(\frac{x+y}{2}\right)-\cos \left(\frac{x+y}{2}\right) \cdot \cos \left(\frac{x-y}{2}\right)$
$+\frac{1}{4} \cdot \cos ^{2}\left(\frac{x-y}{2}\right)+\frac{1}{4} \sin ^{2}\left(\frac{x-y}{2}\right)=0$
$\Rightarrow \left(\cos \left(\frac{x+y}{2}\right)-\frac{1}{2} \cos \left(\frac{x-y}{2}\right)\right)^{2}+\frac{1}{4} \sin ^{2}\left(\frac{x-y}{2}\right)=0$
$\Rightarrow \sin \left(\frac{x-y}{2}\right)=0$ and
$\cos \left(\frac{x+y}{2}\right)=\frac{1}{2} \cos \left(\frac{x-y}{2}\right)$
$\Rightarrow x=y$ and $\cos x=\frac{1}{2}=\cos y$
$\therefore \sin x=\frac{\sqrt{3}}{2}$
$\Rightarrow \sin x+\cos y=\frac{1+\sqrt{3}}{2}$