Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $0<\alpha, \beta, \gamma<\frac{\pi}{2}$ such that $\alpha+\beta+\gamma=\frac{\pi}{2}$ and $\cot \alpha, \cot \beta, \cot \gamma$ are in AP, then the value of $\cot \alpha \cot \gamma$ is

ManipalManipal 2016

Solution:

Given, $\alpha+\beta+\gamma=\frac{\pi}{2}$
$\Rightarrow \cot \alpha+\cot \beta+\cot \gamma=\cot \alpha \cot \beta \cot \gamma$
$\therefore \cot \alpha, \cot \beta, \cot \gamma$ are in AP.
$\Rightarrow 3 \cot \beta=\cot \alpha \cot \beta \cot \gamma$
$\Rightarrow \cot \alpha \cot \gamma=3$