Q.
$I_n$ is the area of n sided regular polygon inscribed in
a circle of unit radius and $O_n$ be the area of the
polygon circumscribing the given circle, prove that
$ I_n = \frac{ O_n}{2} \Bigg ( 1 + \sqrt { 1 - \bigg( \frac{ 2 I_n}{ n} \bigg)^2 } |bigg) $
IIT JEEIIT JEE 2003
Solution: