Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ {{I}_{n}}=\int{{{\tan }^{n}}x}\,\,dx $ for $ n\ge 2, $ then $ {{I}_{n}}+{{I}_{n-2}} $ is equal to

J & K CETJ & K CET 2006

Solution:

We have, $ {{I}_{n}}=\int{ta{{n}^{n}}x\,dx} $
$ =\int{{{\tan }^{n-2}}\,x({{\tan }^{2}}x)\,dx} $
$ \int{{{\tan }^{n-2}}}x({{\sec }^{2}}x-1)dx $
$ \int{{{\tan }^{n-2}}x.\,\,{{\sec }^{2}}x\,dx-{{I}_{n-2}}} $
$ \Rightarrow $ $ {{I}_{n}}+{{I}_{n-2}}=\int{{{\tan }^{n-2}}}x.\,{{\sec }^{2}}x\,dx $
Put $ \tan \,x=t $
$ \Rightarrow $ $ {{\sec }^{2}}x\,\,dx=dt $
$ {{I}_{n}}+{{I}_{n-2}}=\int{{{t}^{n-2}}dt} $
$ =\frac{{{t}^{n-1}}}{n-1}+c $
$ \Rightarrow $ $ {{I}_{n}}+{{I}_{n-2}}=\frac{(tan{{\,}^{n-1}}x)}{n-1}+c $