Q.
(i) If $y=\frac{ax^{2}}{\left(x-a\right)\left(x-b\right)\left(x-c\right)}+\frac{bx}{\left(x-b\right)\left(x-c\right)}+\frac{c}{x-c}+1$, then $\frac{dy}{dx}=$
(ii) Find $\frac{dy}{dx}$, when $y=\frac{\left(\sqrt{x+a}-\sqrt{x-a}\right)^{2}}{\sqrt{x^{2}-a^{2}}}$, where $x > a > 0$.
(i)
(ii)
(a)
$\frac{y}{x}\left[\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}\right]\,$
$\frac{2a}{\sqrt{x^{2}-a^{2}}}$
(b)
$\frac{x}{y}\left[\frac{a-x}{a^{2}-b}+\frac{b}{b-x}+\frac{c}{c-x}\right]\,$
$\frac{-2a^2}{\sqrt{x^{2}-a^{2}}}$
(c)
$\frac{y}{x}\left[\frac{a}{a-x}+\frac{b}{b-x}+\frac{c}{c-x}\right]\,$
$\frac{-2a^{2}}{\left(x^{2}-a^{2}\right)^{3/2}}$
(d)
$\frac{y}{x}\left[\frac{a}{a-x}+\frac{b}{b-x}-\frac{c}{c-x}\right]\,$
$\frac{-2a^{2}}{\left(x^{2}-a^{2}\right)^{1/2}}$
(i) | (ii) | |
---|---|---|
(a) | $\frac{y}{x}\left[\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}\right]\,$ | $\frac{2a}{\sqrt{x^{2}-a^{2}}}$ |
(b) | $\frac{x}{y}\left[\frac{a-x}{a^{2}-b}+\frac{b}{b-x}+\frac{c}{c-x}\right]\,$ | $\frac{-2a^2}{\sqrt{x^{2}-a^{2}}}$ |
(c) | $\frac{y}{x}\left[\frac{a}{a-x}+\frac{b}{b-x}+\frac{c}{c-x}\right]\,$ | $\frac{-2a^{2}}{\left(x^{2}-a^{2}\right)^{3/2}}$ |
(d) | $\frac{y}{x}\left[\frac{a}{a-x}+\frac{b}{b-x}-\frac{c}{c-x}\right]\,$ | $\frac{-2a^{2}}{\left(x^{2}-a^{2}\right)^{1/2}}$ |
Continuity and Differentiability
Solution: