Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. I f $f : R \to R$ s defined by $f \left(x\right)=\frac{x}{x^{2} +1}$, find $f \left(f\left(2\right)\right)$.

Relations and Functions - Part 2

Solution:

Given $ f \left(x\right)=\frac{x}{x^{2}+1}$
$\Rightarrow f\left(2\right)=\frac{2}{2^{2}+1}=\frac{2}{5}$
$\Rightarrow f \left(f\left(2\right)\right)=f\left(\frac{2}{5}\right)=\frac{\frac{2}{5}}{\left(\frac{2}{5}\right)^{2}+1}$
$=\frac{\frac{2}{5}}{\frac{4}{25}+1}$
$=\frac{\frac{2}{5}}{\frac{29}{25}}$
$=\frac{10}{29}$.