Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Hydrogen atom is in its $n^{\text {th }}$ energy state. If de-Broglie wavelength of the electron is $\lambda$, then

AP EAMCETAP EAMCET 2018

Solution:

Angular momentum of electron in $n^{\text {th }}$ orbit of hydrogen is
$L=m v r=\frac{n h}{2 \pi}$
de-Broglie wavelength, $\lambda=\frac{h}{m v}$
$\Rightarrow \frac{m v}{h}=\frac{1}{\lambda}$
$\Rightarrow \frac{r}{\lambda}=\frac{n}{2 \pi}$
$\Rightarrow \lambda=\frac{2 \pi r}{n}$
Now, $r \propto n^{2}$ (Bohr radius, $r=0.529 \times n^{2}\, \mathring{A}$)
$\Rightarrow \lambda \propto n$