Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. How many minimum numbers of a coplanar vector having different magnitudes can be added to give zero resultant

NTA AbhyasNTA Abhyas 2022

Solution:

Let $\overset{ \rightarrow }{F}_{1}$ and $\overset{ \rightarrow }{F}_{2}$ are two vectors having resultant $\overset{ \rightarrow }{F}_{3}$ i.e. $\overset{ \rightarrow }{F}_{3}=\overset{ \rightarrow }{F}_{1}+\overset{ \rightarrow }{F}_{2}$ .
This means all the three forces $\overset{ \rightarrow }{F}_{1}$ , $\overset{ \rightarrow }{F}_{2}$ and $\overset{ \rightarrow }{F}_{3}$ lie in the same plane.
Therefore, if there be a vector acting exactly opposite of $\overset{ \rightarrow }{F}_{3}$ with two other vectors $\overset{ \rightarrow }{F}_{1}$ and $\overset{ \rightarrow }{F}_{2}$ , the net force is zero but they must be coplanar
Solution