Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Halley's Comet revolves around the sun with time period of 76 years. The aphelion distance if perihelion is given by $8.9 \times 10^{10} m$, will be (Take, mass of sun $=2 \times 10^{30} kg$ and $\left.G=6.67 \times 10^{-11} Nm ^3 / kg ^2\right)$

MHT CETMHT CET 2021

Solution:

According to Kepler's third law, time period
$T^2=\frac{4 \pi^2}{G M} a^3$
where, $a$ is the semi-major axis,
$ \Rightarrow a=\left[\frac{76 \times 86400 \times 365 \times 6.67 \times 2 \times 10^{30}}{4 \times 3.14 \times 3.14}\right]^{1 / 3} $
$ =2.7 \times 10^{12} m$
Also in case of ellipse,
$ 2 a=\text { perihelion }+\text { aphelion }$
$\Rightarrow \text { Aphelion }=2 a-\text { perihelion }$
$ =2 \times 2.7 \times 10^{12}-8.9 \times 10^{10}$
$ \approx 5.3 \times 10^{12} m $