Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$
$H_2O_{(l)} \to H_2O_{(g)} ; \Delta H = x_4$
Given, $E_{H - H} = x_1$
$E_{O = O} = x_2$
$E_{O - H} = x_3$
$\Delta H_F$ of $H_2O$ vapour is

Thermodynamics

Solution:

image
Now, for $H _{2}( g )+\frac{1}{2} O _{2}( g ) \longrightarrow H _{2} O (\ell) ; \Delta H$
$\Delta H =( B . D . E )_{\text {reactants }}-( B . D . E )_{\text {products }}$
$= x _{1}+\frac{1}{2} x _{2}-2 x _{3}$
$\Delta H _{ f }=\Delta H + x _{4}$
$= x _{1}+\frac{1}{2} x _{2}-2 x _{3}+ x _{4}$