Q.
Given two vectors; $\vec{ A }=\hat{ i }+\hat{ j }$ and $\vec{ B }=\hat{ i }-\hat{ j }$. Then match the following columns :
Column I
Column II
A
$(\vec{ A }+\vec{ B }) / 2$
1
$\hat{ i }$
B
$(\vec{ A }-\vec{ B }) / 2$
2
$\hat{ j }$
C
$(\vec{ A } \cdot \vec{ B }) / 2$
3
$-\hat{ k }$
D
$(\vec{ A } \times \vec{ B }) / 2$
4
$0$
Column I | Column II | ||
---|---|---|---|
A | $(\vec{ A }+\vec{ B }) / 2$ | 1 | $\hat{ i }$ |
B | $(\vec{ A }-\vec{ B }) / 2$ | 2 | $\hat{ j }$ |
C | $(\vec{ A } \cdot \vec{ B }) / 2$ | 3 | $-\hat{ k }$ |
D | $(\vec{ A } \times \vec{ B }) / 2$ | 4 | $0$ |
Motion in a Plane
Solution: