Q. Given two real sets $A=\left\{a_{1} , a_{2} , a_{3} \ldots a_{2 n}\right\}$ and $B\left\{b_{1} , b_{2} , \ldots b_{n}\right\}.$ If $f:A \rightarrow B$ is a function such that every element of $B$ has an inverse image and $f\left(a_{1}\right)\leq f\left(a_{2}\right)\leq f\left(a_{3}\right)\leq f\left(a_{4}\right)\ldots \leq f\left(a_{2 n}\right),$ then the number of such mappings are
NTA AbhyasNTA Abhyas 2022
Solution: