Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given the differential equation
$\frac{dy}{dx}=\frac{6x^{2}}{2y+cos\,y}; y\left(1\right)=\pi$.
Mark out the correct statement.

Differential Equations

Solution:

We have, $\int \left(2y+cos\,y\right)dy=\int 6x^{2}\,dx$
$\Rightarrow y^{2}+sin\,y=2x^{3}+C$
$\because y\left(1\right)=\pi$
$\Rightarrow C=\pi^{2}-2$
$\therefore $ Solution is $y^{2}+sin\,y=2x^{3}+\pi^{2}-2$
$\Rightarrow y^{2}+siny=2x^{3}+C$, where $C=\pi^{2}-2$