Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Given that (in ohm $^{-1} cm ^{2} eq ^{-1}$ ); $T =298\, K$
$\lambda_{ E }^{\infty}$ for $Ba ( OH )_{2}=228.8$ specific conductance
$\lambda_{ E }^{\infty}$ for $BaCl _{2}=120.3$ for $0.2\, N\, NH _{4} OH$ solution
$\lambda_{ E }^{\infty}$ for $NH _{4} Cl =129.8$ is $4.766 \times 10^{-4} ohm ^{-1} cm ^{-1}$
then value of $pH$ of the given solution of $NH _{4} OH$ will be nearly

Electrochemistry

Solution:

$\lambda_{ E }^{\infty} \text { for } NH _{4} OH =228.8-120.3+129.8=238.3$
Now, $\lambda_{ E }=\frac{1000 \times k}{N}$
$=\frac{1000 \times 4.766 \times 10^{-4}}{0.2}=2.383$
$\therefore \alpha=\frac{\lambda_{E}}{\lambda_{E}^{\infty}}=\frac{2.383}{238.3}=0.01$
$\therefore OH ^{-}=\alpha \times C =.01 \times 0.2=2 \times 10^{-3}$
$\therefore pOH =3-\log 2=3-0.3=2.7$
$\therefore pH =14-2.7=11.3$