Q.
Given that $\displaystyle\prod_{n=1}^n \cos \frac{x}{2^n}=\frac{\sin x}{2^n \sin \left(\frac{x}{2^n}\right)}$.
Let $f(x)=\begin{cases}\underset{n \rightarrow \infty}{\text{Lim}} \displaystyle\sum_{n=1}^n \frac{1}{2^n} \tan \left(\frac{x}{2^n}\right), x \in(0, \pi)-\left\{\frac{\pi}{2}\right\} \\ \frac{2}{\pi}, \quad x=\frac{\pi}{2}\end{cases}$
Then which one of the following altemative is True?
Continuity and Differentiability
Solution: